All functions
|
addNoise()
|
Add Noise |
analyseTaxaInA()
|
Compute edge statistics for an interaction matrix with taxonomic information |
assignTaxonLevelsToA()
|
Assign Taxon Levels |
autocorVsTaxonNum()
|
Compute slope for increasing number of taxa versus their autocorrelation |
binByMemory()
|
Bin rows in a matrix by memory. |
binaryToPerturb()
|
Given a binary vector, build a perturbation object |
caporaso_F4FecesL6
|
Caporaso Stool Sequencing Data for Subject F4 on level 6 |
caporaso_F4LPalmL6
|
Caporaso Left Palm Sequencing Data for Subject F4 on level 6 |
caporaso_F4RPalmL6
|
Caporaso Right Palm Sequencing Data for Subject F4 on level 6 |
caporaso_F4TongueL6
|
Caporaso Tongue Sequencing Data for Subject F4 on level 6 |
caporaso_M3FecesL6
|
Caporaso Stool Sequencing Data for Subject M3 on level 6 |
compareTS()
|
Community Time Series Comparison |
david_stoolA_metadata
|
David et al. stool sample metadata object of subject A |
david_stoolA_otus
|
David Stool Sequencing Data for Subject A |
david_stoolB_metadata
|
David et al. stool sample metadata object of subject B |
david_stoolB_otus
|
David Stool Sequencing Data for Subject B |
david_stool_lineages
|
David et al. stool OTU lineages |
doc()
|
Dissimilarity-Overlap Curve (DOC) |
envGrowthChanges()
|
Generate growth changes induced by environment |
filterTaxonMatrix()
|
Filter taxa in an abundance matrix |
generateA()
|
Generate an interaction matrix |
generateAbundances()
|
Generate Abundance Vector |
generateDataSet()
|
Generate a dataset |
generateTS()
|
Generate community time series |
getAStats()
|
Analyse an interaction matrix |
getConnectance()
|
Connectance |
getPep()
|
Positive Edge Percentage |
getTaxonomy()
|
Get the taxonomy given OTU names and lineage information |
glv()
|
Simulate time series with the generalized Lotka-Volterra model |
hill()
|
Hill numbers |
identifyNoisetypes()
|
Identify Noise Types |
interpolate()
|
Time Series Interpolation |
limits()
|
LIMITS |
limitsQuality()
|
Quality scores and plot for estimated interaction matrices |
modifyA()
|
Modify the interaction matrix |
noisetypes()
|
Constructor for S3 noisetypes class |
normalize()
|
Normalize a matrix |
perturbToBinary()
|
Given a perturbation object, extract a binary vector |
perturbation()
|
Perturbation |
plotA()
|
Plot an interaction matrix. |
plotAbundanceVsNoisetypes()
|
Plot taxon abundances classified by noise type |
plotNoisetypes()
|
Do a barplot of the noise types |
plotNoisetypesVsHurst()
|
Plot noise types versus their range of Hurst exponents |
powerspec()
|
Report slope of periodogram in log scale |
rad()
|
Rank abundance distribution curve |
rarefyFilter()
|
Rarefaction combined with sample filtering |
removeLowAbundance()
|
Remove lowest abundance species |
ricker()
|
Generate time series with the Ricker model |
seqtime
|
Time Series Analysis of Sequencing Data |
sheldon()
|
Compute evenness using Sheldon's index |
simCountMat()
|
Simulate a count matrix |
simDecay()
|
Plot community similarity decay against selected taxa or metadata |
simHubbell()
|
Hubbell Simulation |
simNoiseMat()
|
Simulate Noise |
simUntb()
|
Run the Unified Neutral Theory of Biodiversity (UNTB) model |
sliceTS()
|
Slice time series |
soi()
|
Self-organized instable model |
taylor()
|
Plot relationship between row mean and row variance |
testStability()
|
Stability test for interaction matrix |
timeDecay()
|
Plot the time decay. |
tsDiagnostic()
|
Diagnostics for Community Simulation |
tsJumpStats()
|
Compute statistics on jumps through community space |
tsplot()
|
Time Series Plot |
tsubsample()
|
Subsample Time Series |
varEvol()
|
Plot mean variance versus the number of time points. |