All functions

addNoise()

Add Noise

analyseTaxaInA()

Compute edge statistics for an interaction matrix with taxonomic information

assignTaxonLevelsToA()

Assign Taxon Levels

autocorVsTaxonNum()

Compute slope for increasing number of taxa versus their autocorrelation

binByMemory()

Bin rows in a matrix by memory.

binaryToPerturb()

Given a binary vector, build a perturbation object

caporaso_F4FecesL6

Caporaso Stool Sequencing Data for Subject F4 on level 6

caporaso_F4LPalmL6

Caporaso Left Palm Sequencing Data for Subject F4 on level 6

caporaso_F4RPalmL6

Caporaso Right Palm Sequencing Data for Subject F4 on level 6

caporaso_F4TongueL6

Caporaso Tongue Sequencing Data for Subject F4 on level 6

caporaso_M3FecesL6

Caporaso Stool Sequencing Data for Subject M3 on level 6

compareTS()

Community Time Series Comparison

david_stoolA_metadata

David et al. stool sample metadata object of subject A

david_stoolA_otus

David Stool Sequencing Data for Subject A

david_stoolB_metadata

David et al. stool sample metadata object of subject B

david_stoolB_otus

David Stool Sequencing Data for Subject B

david_stool_lineages

David et al. stool OTU lineages

doc()

Dissimilarity-Overlap Curve (DOC)

envGrowthChanges()

Generate growth changes induced by environment

filterTaxonMatrix()

Filter taxa in an abundance matrix

generateA()

Generate an interaction matrix

generateAbundances()

Generate Abundance Vector

generateDataSet()

Generate a dataset

generateTS()

Generate community time series

getAStats()

Analyse an interaction matrix

getConnectance()

Connectance

getPep()

Positive Edge Percentage

getTaxonomy()

Get the taxonomy given OTU names and lineage information

glv()

Simulate time series with the generalized Lotka-Volterra model

hill()

Hill numbers

identifyNoisetypes()

Identify Noise Types

interpolate()

Time Series Interpolation

limits()

LIMITS

limitsQuality()

Quality scores and plot for estimated interaction matrices

modifyA()

Modify the interaction matrix

noisetypes()

Constructor for S3 noisetypes class

normalize()

Normalize a matrix

perturbToBinary()

Given a perturbation object, extract a binary vector

perturbation()

Perturbation

plotA()

Plot an interaction matrix.

plotAbundanceVsNoisetypes()

Plot taxon abundances classified by noise type

plotNoisetypes()

Do a barplot of the noise types

plotNoisetypesVsHurst()

Plot noise types versus their range of Hurst exponents

powerspec()

Report slope of periodogram in log scale

rad()

Rank abundance distribution curve

rarefyFilter()

Rarefaction combined with sample filtering

removeLowAbundance()

Remove lowest abundance species

ricker()

Generate time series with the Ricker model

seqtime

Time Series Analysis of Sequencing Data

sheldon()

Compute evenness using Sheldon's index

simCountMat()

Simulate a count matrix

simDecay()

Plot community similarity decay against selected taxa or metadata

simHubbell()

Hubbell Simulation

simNoiseMat()

Simulate Noise

simUntb()

Run the Unified Neutral Theory of Biodiversity (UNTB) model

sliceTS()

Slice time series

soi()

Self-organized instable model

taylor()

Plot relationship between row mean and row variance

testStability()

Stability test for interaction matrix

timeDecay()

Plot the time decay.

tsDiagnostic()

Diagnostics for Community Simulation

tsJumpStats()

Compute statistics on jumps through community space

tsplot()

Time Series Plot

tsubsample()

Subsample Time Series

varEvol()

Plot mean variance versus the number of time points.